Capacity of the range of tree-indexed random walk

نویسندگان

چکیده

By introducing a new measure for the infinite Galton–Watson process and providing estimates (discrete) Green’s functions on trees, we establish asymptotic behavior of capacity critical branching random walks: in high dimensions d≥7, grows linearly; dimension d=6, it asymptotically proportional to nlogn.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Entropy of Random Walk Range

We study the entropy of the set traced by an n-step simple symmetric random walk on Z. We show that for d ≥ 3, the entropy is of order n. For d = 2, the entropy is of order n/ log n. These values are essentially governed by the size of the boundary of the trace.

متن کامل

Random Fractals and Tree - Indexed Markov

We study the size properties of a general model of fractal sets that are based on a tree-indexed family of random compacts and a tree-indexed Markov chain. These fractals may be regarded as a generalization of those resulting from the Moran-like deterministic or random recursive constructions considered by various authors. Among other applications, we consider various extensions of Mandelbrot's...

متن کامل

Range of a Transient 2d-Random Walk

We study the range of a planar random walk on a randomly oriented lattice, already known to be transient. We prove that the expectation of the range grows linearly, in both the quenched (for a.e. orientation) and annealed (”averaged”) cases. We also express the rate of growth in terms of the quenched Green function and eventually prove a weak law of large numbers in the (non-Markovian) annealed...

متن کامل

The dimension of the range of a transient random walk∗

We find formulas for the macroscopic Minkowski and Hausdorff dimensions of the range of an arbitrary transient walk in Z. This endeavor solves a problem of Barlow and Taylor (1991).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Applied Probability

سال: 2022

ISSN: ['1050-5164', '2168-8737']

DOI: https://doi.org/10.1214/21-aap1689